Review

Herbal remedies in animal parasitic diseases in Nigeria: a review

FAJIMI, A. K. and TAIWO, A. A.

Institute of Agricultural Research and Training, Obafemi Awolowo University, Moor Plantation, P. M. B. 5029, Ibadan, Nigeria.

Accepted November, 2004

This review of literature elucidates previous and current status of herbal remedies in animal parasitic diseases in Nigeria. It provides background information on the rationale behind ethnoveterinary research in general especially as it relates to the developing nations where cost of drugs majorly limit the full use of modern medicine. It presents in quantifiable terms the degree of efficacy of whole or plant parts and their extracts in percentages of efficacy. Dosages and concentrations were reported in certain instances especially in confirmatory research trials unlike in “surveys” where dosages were not recorded but presented only as “traditional practices among herdsmen” for which scientific validation is necessary. Also, comparative inferences were drawn between the efficacy of tested herb and its counterpart in modern medicine. This review concludes that ethnoveterinary medicine should form a part of modern day animal health delivery system.

Keywords: Herb, efficacy, ethno-veterinary, parasite.

INTRODUCTION

The use of plant and animal parts for medicines has long being in existence and are widely documented in records kept in ancient China, India and Egypt. These ancient indigenous practices were discovered by a series of “trial and error” which then could not be substantiated by proven scientific theories. However, these practices have produced results of proven efficacies compared to conventional modern medicine (Chopra et al., 1956). In recent times, herbal medicines have become indispensable and are forming an integral part of the primary health care system of many nations.

A recent survey (1977) in the United States of America (USA) indicate an expected 20% annual growth in herbal medicine in the next 5 years (Saxena, 2001) with an estimated 80% of the world population living in the developing countries still relying on plants for health care. In the USA, the total number of visits to unconventional healers in 1988 was 425 million compared with 388 million visits to primary health care physicians, accounting for an estimated $13.7 billion in the unconventional market (Eisenberg et al., 1993).

In view of this large dependence on traditional health practices, the World Health Organisation (WHO) recognized the implicit role of herbal medicine in the Alma Mata declaration of Health for All by the Year 2000 A.D. In 1978, WHO approved the use of these natural products. In 1996, the American Veterinary Medical Association officially recognized veterinary acupuncture and acutherapy, veterinary chiropractic, physical therapy, massage, homeopathic, botanical, nutraceutical and holistic veterinary medicine (Schillhorn, 1997).

In Nigeria, Fulani herdsmen and others who keep animals as a means of livelihood have been involved in the treatment of animal diseases prior to the onset of modern medicine (Nwude, 1986), of which remedies against parasitism account for the highest means of intervention (Ibrahim et al., 1984). The primary aim of this work is to review literature on the current and previous works on ethno-veterinary research and development and enumerate factors to move the discipline forward.

*Corresponding author. E-mail: rocovo4@yahoo.com.
JUSTIFICATION FOR HERBAL REMEDIES IN ANIMAL PARASITIC DISEASES

The efficacies of conventional medicaments against both endo- and ecto-parasitic diseases have been reported with variable success (Meloney 1982; Basu and Haldar, 1994; Prichard 1978). However, the toxic effects of these chemicals on humans (Kaemmerer and Butenkorther, 1973; Murray et al., 1992), the development of resistance to it by target parasites (Maingi et al., 1996) as well as high cost of drugs (Chema et al., 1990) pave way for herbal remedies as reasonable alternative. Herbal therapies are natural products, environmentally friendly and cheap. Heifer Project International and other development organisations have given high priority and consideration to medicinal plants because it promotes biodiversity and conservation.

MEDICINAL PROPERTIES OF SOME INDIGENOUS PLANTS IN NIGERIA

Yohimbine, developed for use in traditional medicine, is employed for use in veterinary medicine as an aphrodisiac (Nwude and Ibrahim, 1980). The anti-inflammatory as well as the anti-pyretic activities of Azadiracta indica have been evaluated and documented (Okpanyi and Ezekwu, 1981). Also, the anti-inflammatory and analgesic properties of the methanolic extract of Ramalina farinacea at a dose of 1600 mg/kg showed that signs associated with inflammation were suppressed by the drug, comparable to that of the standard drug, indomethacin (Udem et al., 2001). The hot water leaf extract of Ocimum gratissimum in dogs produced a significant reduction in the duration of emesis comparable to that of metaclopamide, a standard anti-emetic drug (Udem and Opara, 2001).

Leaves of Cassia occidentalis is used as a convulsant and as a purgative, Andasonia digitala as an antidiarrhoeic in cattle, while Erythrina senegalensis has a potent diuretic property (Gefua, 2000). Guleria senegalensis, Anogassus leocarpus and Selerocarya birrea have been found useful in overcoming parturition difficulties in domestic animals (Hassan and Zalla, 2005).

The root extract of Nauclea latifolia was observed by Madubunyi (1995) to possess antihypertensive effect and inhibited the multiplication of Trypanosoma brucei infection. Alcohol extract of a combination of Sorghum bicolor and Telfaria occidentalis reconstituted at a concentration of 4 mg/100ml of distilled water proved a potent haematicic in the treatment of anaemic rabbits and better compared to commercial haematicic (Adedapo et al., 2002). The activities of Carica papaya extracts against Salmonella aureus and Escherichia coli have been documented in literature (Emekwu, 1982; Ekpe et al., 1996). Other reports on the antimicrobial activities of certain Nigerian plants have been reported (Olukoya et al., 1993; Sofowora, 1993; Irobi, 1992; Iwu, 1994 and Etkin et al., 1990).

An array of plant extracts native to northern Nigeria tested against poliovirus, astrovirus and parvovirus using the microtitre plate inhibition test and at a dose of between 100 µg/100 µl to 400 mg/100 µl produced significant antiviral effect (Kudi and Myint, 1999).

The anti-microbial properties of the crude extract of Agaricomyces cydonizades have been validated (Durodola, 1977). The aqueous extract of Combretus padiculatum was found to be bacteriocidal at 10% and bacteriostatic at 5% against Salmonella pullorum (Atawodi, 2000). The anti-bacterial properties of Aegyptia was validated against Staphylococcus aureus, and methanol leaves extract of Balanites aegypti against Staphylococcus albus and Shigella using the zone inhibition method has been reported (Agaie and Usman, 2001).

ANTI-PARASITIC PROPERTIES OF SOME INDIGENOUS PLANTS IN NIGERIA

The kern oil of B. aegyptica proved highly efficacious against ectoparasite infestation of camels in Northern Nigeria (Oliver, 1960). Skin parasite infections of goats in Southern Nigeria have been successfully treated with leaves of Sida carpinifolia squeezed and rubbed on lesions (Dalziel, 1937). Burned leaves and twigs of Guiera senegalensis as well as burned whole plant of Hyptis specifigera are used individually as insecticides in Nigeria (Nwude, 1997).

Sheabutter (Vitellaria panadoxa) plus salt at a ratio of 100:1 have been found efficacious in the treatment of localised psoroptic mange infection in rabbits with about 90% efficacy by the 14th day (Fajimi et al., 2002a). Aloe variegata, a green dogger shaped plant with a clear viscous gel applied as a gel-spread over mange lesions produced an efficacy of over 50% (Fajimi et al., 2002b). Okolo and Unaigwe (1984) reported that mange is treated by scrubbing the skin lesions with the fibrous palm kernel fruit waste with the addition of lime, kitchen salt, lime juice (Citrus australium) and palm oil, for a couple of weeks. Shittu and Bwala (1988) reported the proven efficacy of the seed oil of mahogany (Kyaya ivorizensis) against dermatitis associated with mange and dermatophirosis. Neem (Azadiracta indica) has been found useful as a pesticidal skin cream and when combined with a shampoo forms an excellent agent against lice (Birmah, 2000). Tobacco leaf + stem extract showed a 100% efficacy against lice by the 2nd day of application and maintained this efficacy for about 56 days post challenge in West African dwarf goats (Fajimi et al., 2003). Annona squamosa and Tephrosia vogelii through their powdered seeds effectively control lice in ruminants and poultry (Nwude, 1997). The rubbing of heated loose sand on the body of animals with lice has been found to effect a measure of control (Okolo and Unaigwe, 1984).
Table 1. Ethnoveterinary practices adopted for lice control.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Yoruba Name</th>
<th>Mode of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand paper leaves</td>
<td>Ficus exasperate</td>
<td>Eepin</td>
<td>Branches put in resting place. Replaced regularly.</td>
</tr>
<tr>
<td>Cassava</td>
<td>Manihot esculenta</td>
<td>Ege</td>
<td>Fermented water from (ii) and (iii) sprinkled in bird shed.</td>
</tr>
<tr>
<td>Maize</td>
<td>Zea mays</td>
<td>Ogi</td>
<td>Male inflorescence of tree burnt in the shed. It gives a pungent odour.</td>
</tr>
<tr>
<td>Palm Tree</td>
<td>Elaeis guinensis</td>
<td>Airan Ope</td>
<td>Rubbed under the feathers and sprinkled on top.</td>
</tr>
<tr>
<td>Ash</td>
<td>Carbon</td>
<td>Eeru</td>
<td></td>
</tr>
<tr>
<td>Lime</td>
<td>Citrus medica</td>
<td>Osan Wele</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Plants used in the treatment of parasitic and protozoan diseases of poultry in Nigeria.

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Vernacular name of plant</th>
<th>Disease treated for</th>
<th>Preparation and administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khaya senegalensis</td>
<td>Madaci (H) Ghyaghya (G)</td>
<td>a) i. Coccidiosis ii. helminthiasis</td>
<td>i) Mix soap with dried powered mahogany bark and add to drinking water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>i) Mix soap with dried powered mahogany bark and add to drinking water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ii) Pound dried stem bark with red potash and give in drinking water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pound dried stem barks of K. senegalensis, ‘bazana’ and ‘banohi’ together, mix with potash and give in drinking water for 2 – 3 days.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) i. amoebic dysentry ii. diarrhoea Helminthiasis of poultry</td>
<td>Pound dried stem bark with red potash and give in drinking water or cook the root with red potash and serve for drinking.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mix juice with drinking water and add small red potash.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pound dried stem bark with red potash and give in drinking water for 2 – 3 days. Boil together.</td>
</tr>
<tr>
<td>Terminalia avicennoides</td>
<td>Baushe (H)</td>
<td></td>
<td>Stem barks of B. dalzielli and ‘durmi ganji’ and ‘Kanmda’ and give in drinking water. Pound the fresh leaves and squeeze into drinking water.</td>
</tr>
<tr>
<td>Citrus aurantifolia</td>
<td>Lemon (E) Lemun sami (H)</td>
<td>Worm infestation of poultry</td>
<td>For duck’s lice, drop bulb in the bird’s drinking water and for chickens use green leaves (spring onions) to be picked by the birds.</td>
</tr>
<tr>
<td>Boswellia dalzielli</td>
<td>Ararrabi (H) andkehi (F)</td>
<td>Coccidiosis and amoebic dysentry.</td>
<td></td>
</tr>
<tr>
<td>Allium cepa</td>
<td>Albasa (H) Ghipa (G)</td>
<td>Helminthiasis</td>
<td></td>
</tr>
</tbody>
</table>

Source: Gefu et al. (2000).

Pawpaw leaves when burnt into ashes and used as a topical agent control lice in poultry (Nwude and Ibrahim, 1980). The trypanocidal activity of Allium sativum (garlic) in rabbits as well as that of Morinda lucida leaf extract in mice against Trypanosomas brucei infection have been documented (Asuzu and Chineme, 1990; Ajagbona et al., 2003). Also, the trypanocidal potentials of Azadirachta indica as well as the in vitro activity of its leaf extract against Trypanosoma brucei have been assessed with reasonable success (Nok et al., 1993). Other ethnoveterinary practices adopted in the treatment of lice is highlighted in Table 1 (Eruvbetine and Abegunde, 1998).

Valkosen (2001) established that garlic fruits and bamboo shoots are effective in the treatment of pigs against Ascaris suum and that there is no significant difference between the treatment and that of piperazine. The confirmed efficacy of the aqueous extract of the seeds of Carica papaya against Oesophagostomum, Trichuris and Trichostrongylus have been validated to be over 90% in efficacy (Fajimi et al., 2001). C. papaya leaves contain papain which is capable of digesting bacteria and parasitic cells hence its use as an anthelmintics and antibiotics (Saka, 2000). The leaves of Amaranthus spinosus have been found to elicit over 80% reduction in eggs per gram faeces of trichostrongylids in sheep and goats (Assiak et al., 2002). The ethanolic extract of Khaya senegalensis, Amaranthus spinosus and Heliotropium indicum produced a significant reduction in mean eggs per gram faeces of trichostrongylids comparable to the effect of ivermectin (Okpara et al., 2004).

In vitro efficacy study of Nauclea latifolia showed high anthelmintic efficacy against strongyle nematodes of small ruminants by its ability to prevent parasite eggs from hatching. The extract at the concentration of 100 mg/ml was observed to have comparable anthelmintic efficacy with commercial anthelmintic drug, levamisole and albendazole (Onyeyi et al., 2001). Resins, bitter principles, tannins, flavonoids and indolquinolizidine alkaloids have been isolated from Nauclea Latifolia.

CONCLUSIONS

Numerous plants indigenous to Nigeria and to Africa in general have been found with amazing medicinal properties. Some are well-evaluated vis-à-vis their content of specific active principles against the target parasites while others are not. It is therefore highly essential that medicinal plants whose properties have not been fully characterized should form a top agenda of top management in developing nations whose citizens are sometimes unable to afford expensive orthodox medicine. This policy if pursued will not only preserve the medicinal plants whose properties have not been fully characterized should form a top agenda of top management in developing nations whose citizens are sometimes unable to afford expensive orthodox medicine. This policy if pursued will not only preserve the scarce foreign exchange but also promote the spirit of plant conservation. This can be accelerated by including ethno-veterinary medicine as part of curriculum in veterinary school and as an integral part in veterinary delivery systems.

REFERENCES

Alawa CBI, Gefu JO, Chiezey PN, Abdu PA, Magaji SO, Eduvie LO, Adeyinka IA Screening of Vernonia amygdalinia for anthelmintic properties. Proceedings of an international workshop on ethnovet. practices held between 14 – 18 August, 2000, Kaduna. Published by the National Animal Production Research Institute, Ahmadu Bello University, Zaria, Nigeria.

