

ISSN 2277-4289 | www.gjrmi.com | International, Peer reviewed, Open access, Monthly Online Journal

Research article

ETHNO-BOTANICAL STUDY OF PLANTS USED FOR TREATING MALARIA IN A FOREST: SAVANNA MARGIN AREA, EAST REGION, CAMEROON

BETTI Jean Lagarde^{1*}, CASPA Roseline², AMBARA Joseph³, KOUROGUE Rosine Liliane⁴

¹ Department of Botany, Faculty of Sciences, University of Douala, BP 24 157 Cameroon ²IRAD, Yaoundé, Cameroon

Received: 26/08/2013; Revised: 30/09/2013; Accepted: 01/10/2013

ABSTRACT

Ethno-botanical surveys were conducted in Andom, a village situated in a forest-savanna contact zone from December 2011 to April 2012 with the aim to gather plants that are used in traditional medicine. The method used is direct interviews conducted among adult people, mainly women. The 36 persons interviewed prescribed a total of 219 citations and 94 recipes of 59 plant species distributed in 49 genera and 27 families in the treatment of malaria or fever. About 51.6 % of the citations are made of combination of two, three; four, five, six, or seven plant species. Leaves are the plant parts that are largely used; decoctions are the pharmaceutical forms that are more cited; and recipes are essentially administered orally. A total of 29 plant species (57%) used by Andom people against malaria are also known in other regions of Cameroon and other African countries for the same use. Among these, eight plant species representing 27.6 % are well recognised in the literature for their real activity against malaria including: Alstonia boonei, Carica papaya, Citrus limon, Cymbopogon citratus, Enantia chlorantha, Morinda lucida, Picralima nitida, and Vernonia amygdalina. The fact that some plant species cited by Andom people are well recognized for their activity against *Plasmodium*, is a credibility index which can be attributed to the pharmacopoeia of those people on one hand and illustrates the efficiency of the method used to identify medicinal plants of the Andom village on the other hand. Future studies should be directed towards implementing strategies and programmes to identify active chemical substances of other plant species which have not yet been investigated for their chemical and anti-malarial activities in the region.

KEY WORDS: Forest-savanna contact zone, Medicinal plants; Malaria; Recipe; Andom village.

Cite this article:

Betti. J. L., Caspa. R., Ambara. J., Kourogue. R. L., (2013), ETHNO-BOTANICAL STUDY OF PLANTS USED FOR TREATING MALARIA IN A FOREST: SAVANNA MARGIN AREA, EAST REGION, CAMEROON, Global J Res. Med. Plants & Indigen. Med., Volume 2(10): 692–708

³ Ministry of Environment, Nature protection and Sustainable development, Yaoundé, Cameroon

⁴Ministry of Forestry and Wildlife, Cameroon *Corresponding Author: E-mail: lagardebetti@yahoo.fr; Phone: 00 (237) 77 30 32 72

INTRODUCTION

Malaria is a global disease that is predominant in the tropics and caused by blood parasites, Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae, and Plasmodium vivax. The parasite is transmitted to its human hosts via various mosquito species of the genus Anopheles. Malaria has a great morbidity than any other infectious diseases of the world as well as a contributing factor to poverty in tropical and subtropical regions such as sub-Saharan Africa (World Malarial Report, 2008). Plasmodium falciparum; the pathogenic most widespread human malaria is becoming increasingly resistant to anti-malarial drugs. The malaria parasite has gradually developed resistance to the most commonly used medicines. The resistance of *Plasmodium* spp. to drugs such as chloroquinone has become a serious problem in areas of endemic malaria such as Cameroon, and in malaria-free areas with occasional imported cases. This requires extra effort and continuous search for new drugs, especially with new mode of action (Muregi et al. cit. Saotoing et al., 2011; Oketch-Rabah and Mwangi, 1998). Ethnobotanical survey is an important step in the identification, selection and development of the therapeutic agents from medicinal plants (Balick, 1985, 1990, 1994; Cotton, 1996; King and Tempesta, 1994). This paper aims to analyze the traditional use of medicinal plants in the treatment of malaria in Andom, a village situated in the forest-savanah contact zone, East region, Cameroon.

MATERIAL AND METHODS

The study site

Andom village is in the Eastern region, in the Lom and Djerem division, Diang subdivision or commune. The village was established in 1925 and is located at about 45 km from Bertoua, the regional capital of East Cameroon. Houses line both sides of National Route 1, which is 3.5 km, East to West. The population of Andom village is about 2,500. The *Bamvélé* people are classified within the Tuki, Bantou group, and along with the Baka and Bororo peoples, live in Andom

village. Among them, the Bamvélé people are the most prevalent ethnicity within Andom village. Andom is located at the forest-savanna transition zone, with the savanna being the main useful lands. Cassava, groundnuts, maize and cocoyams seem to be in this order, the most important crops cultivated in this savanna area. But some people are moving more and more in the forest zone in search of new and fertile soils for cultivation. The mixed cropping of cassava and groundnuts or maize under grass fallow is the most common cropping system used in Andom village. In this fallow, the wild plant species Chromolaena odorata, known locally as "Bokassa" abunds. Non-timber forest products including wild fruits (moabi, bush mango), caterpillar (egbagéndong), bushmeat (grass-cutter, rats, duikers) are used in the daily diet of the villagers as sources complementary proteins. Andom village is rich in medicinal plants which are used for the daily healthcare.

Ethno-botanical survey

Data for this study were obtained from direct interviews with the local people conducted from December 2011 to April 2012 in Andom village. The survey aimed at identifying plants used in the popular pharmacopoeia among local people. The household was considered as the sample unit. In each household data were mostly recorded from adult women (mothers), because they usually knew the plants better than men and younger people. They provided useful and firsthand information on the popular use of medicinal plants. During the survey, we made enquiry "as to what ailments were treated by which plant species" rather than asking "which plants were used to treat which ailments". For each health problem cited, the name of the plants and the plant parts used were carefully recorded.

For each health problem cited, details of prescriptions (plant part used, mode of preparation, etc.) were carefully recorded. The vernacular names of the plants were recorded as much as possible, and the plants mentioned by the informants were collected. The final

identification of plants was made at National Herbarium of Cameroon Yaounde (YA) with the help of Dr. Onana and Mr. Paul Mezili. Voucher herbal specimens, collected in three samples are kept at the YA.

The therapeutic statements were made of a specific disease, a symptom or a physiological effect. Information on the diagnosis of ailments was provided through a semi-structured interview of nurses or local health officials. In this paper, anti-malarial plants refer to the plants used for treating malaria or fever on a broader scale.

RESULTS

List of anti-malarial plants

A total of 36 persons (Table 1) provided information on the use of medicinal plants in treatment of malaria comprising 29 women and 7 men. The average age of the informant is 54 years old. A total of 51 plant species were cited for which a total of 219 citations were made on malaria (Table 2). The plant species cited are

distributed in 49 genera and 27 families. The most cited plant species are: Alstonia boonei (24 citations), Enantia chlorantha (22), Rauvolfia vomitoria (13), Dichrocephala integrifolia (12), Carica papaya (10), Citrus limon (10), Schumanniophyton magnificum (9), and Capsicum frutescens (9). The most represented families are Asteraceae (7 plant species) and Apocynaceae (5). The most cited families are Apocynaceae (52 citations), Asteraceae (31), Annonaceae (25), Rubiaceae (15), Rutaceae (11), Solanaceae and Caricaceae (10 citations each).

The list of the 219 citations of anti-malarial plants recorded in Andom village is presented in table 3. Each citation or line in the table presents for a given plant species, the scientific name, the associated plant (s), the plant part cited, the mode of preparation, the voice (way) of administration, and the code of informant(s) who indicated the recipe in brackets. The first letter of the code refers to the gender (M: male, F: female), the number indicates the order number of the informant in each gender.

Table 1: List of informants

Code_informant	Age
F1	34
F2	71
F3	40
F4	50
F5	49
F6	59
F7	64
F8	78
F9	42
F10	52
F11	54
F12	58
F13	75
F14	62
F15	50
F16	35
F17	57
F18	45

Code_informant	Age
F19	36
F20	55
F21	62
F22	49
F23	76
F24	80
F25	60
F26	39
F27	60
F28	50
F29	51
M1	43
M2	40
M3	35
M4	60
M5	47
M6	74
M7	57

Table 2: List of plant species cited as anti-malarials in Andom village

Scientific Name	Family
Acmella caulirhiza Del. (syn. : Spilanthes filicaulis, S. africana)	Asteraceae
Ageratum conizoides L.	Asteraceae
Albizia adianthifolia (Schum.) W.F.Wight	Mimosaceae
Alchornea cordifolia (Sch. & Thonn.) Müll. Arg.	Euphorbiaceae
Alstonia boonei De Wild.	Apocynaceae
Annona muricata L.	Annonaceae
Anonidium mannii (Oliv.) Engl. & Diels	Annonaceae
Beilschmiedia sp	Lauraceae
Bidens pilosa L.	Asteraceae
Bridelia scleroneura	Euphorbiaceae
Capsicum frutescens L.	Solonaceae
Carica papaya L.	Caricaceae
Chenopodium ambrosioides L.	Chenopodiaceae
Chromolaena odorata (L.) R. King & H. Robinson	Asteraceae
Citrus limon L.	Rutaceae
Citrus reticulata L.	Rutaceae
Clerodendrum splendens G. Don	Verbenaceae
Coffea canephora Froehn. (syn: Coffea robusta Linden)	Rubiaceae
Cymbopogon citratus (DC.) Stapf	Poaceae
Dacryodes edulis (G. Don) H. J. Lam	Burseraceae
Dichrocephala integrifolia (L. f.) O. ktze	Asteraceae
Elaeis guineensis Jacq.	Arecaceae
Enantia chlorantha Oliv.	Annonaceae
Eucalyptus camaldulensis	Myrtaceae
Ipomoea involucrata Beauv.	Convolvulaceae
Khaya ivorensis	Meliaceae
Lippia sp	Verbenaceae
Mangifera indica L.	Anacardiaceae
Manihot esculenta Crantz	Euphorbiaceae
Morinda lucida Benth.	Rubiaceae
Musa paradisiaca L.	Musaceae
Musa sapientum L.	Musaceae
Ocimum gratissimum L	Lamiaceae
Persea americana Mill.	Lauraceae
Picralima nitida (Stapf) Th & H. Dur.	Apocynaceae
Psidium guajava L.	Myrtaceae
Pteridium aquilinum	Dennstaediaceae
Rauvolfia vomitoria Afzel.	Apocynaceae
Maranthocloa Sp	Maranthaceae
Schumanniophyton magnificum (R. Good). N. Hallé	Loganiaceae

Solanum melongena L.	Solonaceae
Spathodea campanulata P. Beauv.	Bignoniaceae
Tabernaemontana crassa Benth.	Apocynaceae
Tetrapleura tetraptera (Schum. & Thonn.) Taub.	Mimosaceae
Theobroma cacao L.	Sterculiaceae
Tithonia diversifolia Gray	Asteraceae
Vernonia amygdalina Del.	Asteraceae
Vitex doniana Sweet	Verbenaceae
Voacanga africana Stapf incl.	Apocynaceae
Zingiber officinale Rosc.	Zingiberaceae

Table 3: Citations of anti-malarial plant species in Andom village

Scientific Name	Associated Plant	Plant Part	Mode of	Administration	Code_
			preparation		Informant
Ageratum conyzoides	associated with Dichrocephala	whole plant	decoction	bath	F2
Ageratum conyzoides	Dichrocephala, Citrus limon	fresh leaves	decoction	oral	F18
Ageratum conyzoides	Elaeis guineensis	fresh leaves	grind	rub on child	F24
Ageratum conyzoides		fresh leaves	maceration	oral	F25
Ageratum conyzoides		fresh leaves	trituration	friction	F3
Ageratum conyzoides		fresh leaves	trituration	press on painful side	F25
Ageratum conyzoides		fresh leaves	trituration	rub on body	F10, F19
Albizia adiantifolia	Voacanga	fresh leaves	pound	application on stomach	M6
Alchornea cordifolia	Rauvolfia vomitoria	fresh leaves	warm on fire-friction- squeeze	oral	F7
Alchornea cordifolia		fresh leaves	decoction	vaporation bath	F8
Alstonia boonei	associated with Cymbopogon	stem bark	decoction	oral	F16
Alstonia boonei	Associated with Vernonia	stem bark	decoction	oral	F20
Alstonia boonei	Ctrus limon	stem bark	decoction	oral	F26
Alstonia boonei	Enantia	stem bark	decoction	oral	F29
Alstonia boonei		stem bark	decoction	oral	F1, F2, F4, F7, F9, F10, F12, F18, F19, F25, F28,M1, M2, M4
Alstonia boonei		stem bark	decoction	rectal	F4
Alstonia boonei		stem bark	infusion	oral	F2, M2
Alstonia boonei		stem bark	maceration	oral	F10, F14, F18
Alstonia boonei		stem bark	maceration	rectal	F4
Annona muricata	associated with Carica	fresh leaves	decoction	Vaporation bath	F16
Annona muricata	associated with Coffea	fresh leaves	decoction	oral	F30
Annonidium mannii		stem bark	decoction	oral	F1

Beilschmiedia sp	Capsicum frutescens	stem bark	decoction	nasal	F8
Bidens pilosa	associated with <i>Enantia</i>	fresh leaves	decoction	oral	F27
Bridelia scleroneura	associated with Spathodea	roots	decoction	auricular	F8
Bridelia scleroneura	associated with Spathodea	roots	decoction	nasal	F8
Caffea robusta	Citrus limon, Theobroma	fresh leaves	decoction	oral	F28
Caffea robusta	Musa sapientum	fresh leaves	decoction	Vaporation bath	F23
Capsicum frutescens	associated with	fruits	decoction	nasal	F8
cup seems j. meseems	Beilschmiedia				
Capsicum frutescens	associated with	fruits	maceration	rectal	F17
	Clerodendrum				
Capsicum frutescens	associated with Coffea	fruits	decoction	oral	F30
Capsicum frutescens	associated with Spathodea	fresh leaves	warm on fire-friction- squeeze	nasal	F3
Capsicum frutescens	associated with Spathodea	fresh leaves	warm on fire-friction- squeeze	Oral instillation	F3
Capsicum frutescens	associated with Spathodea	fruits	decoction	auricular	F8
Capsicum frutescens	associated with Spathodea	fruits	decoction	nasal	F8
Capsicum frutescens	Associated with Vernonia	fresh leaves	trituration	rectal	F16
Capsicum frutescens		fruits	decoction	oral	F11
Carica papaya	associated with Coffea	fresh leaves	decoction	Vaporation bath	F27
Carica papaya	associated with Lippia	fresh leaves	decoction	Vaporation bath	F18
Carica papaya	Associated with Persea	fresh leaves	decoction	Vaporation bath	F20
Carica papaya	Citrus limon, Cymbopogon, Musa paradisiaca, Annona, Voacanga	fresh leaves	decoction	Vaporation bath	F16
Carica papaya	Psydium, Coffea, Eucalyptus, Citrus limon	fresh leaves	decoction	oral	F22
Carica papaya	Psydium, Coffea, Eucalyptus, Citrus limon	roots	decoction	oral	F22
G :		C 1. 1	4	1	E4
Carica papaya		fresh leaves	decoction	oral	F4 F4
Carica papaya		fresh leaves	maceration	oral	
Carica papaya		seeds	decoction	oral	F4 F4
Charica papaya	associated with	seeds	maceration	Oral	F2
Chenopodium ambrosioides	Dichrocephala	whole plant	decoction	Bath	Γ2
Chenopodium	Біснгосерниц	fresh leaves	decoction	oral	F4
ambrosioides		Tiesti leaves	decoction	Orai	17
Chromolaena odorata	associated with Coffea	fresh leaves	decoction	Vaporation bath	F3
Chromolaena	Musa sapientum, Thitonia	fresh leaves	decoction	Vaporation bath	F5
odorata	diversifolia				
Citrus limon	associated with Ageratum	fruits	decoction	oral	F18
Citrus limon	associated with Enantia chlorantha	fruits	decoction	oral	M2
Citrus limon	Associated with Alstonia	fruits	decoction	oral	F26
Citrus limon	associated with Carica	fresh leaves	decoction	Vaporation bath	F16
Citrus limon	associated with <i>Carica</i> 's leaves	fruits	decoction	oral	F22
Citrus limon	associated with Carica's	fruits	decoction	oral	F22
	roots				
Citrus limon		fresh leaves	decoction	Vaporation bath	F27

Citrus limon	associated with Coffea	fruits	decoction	oral	F28
Citrus limon	associated with Lippia	fresh leaves	decoction	Vaporation bath	F18
Citrus reticula	Associated with Persea	fresh leaves	decoction	Vaporation bath	F20
Clerodendrum	Associated with Morinda	fresh leaves	trituration	oral	M3
splendens					
Clerodendrum	Associated with Vernonia	fresh leaves	trituration	rectal	F16
splendens					
Clerodendrum	Capsicum frutescens	fresh leaves	maceration	rectal	F17
splendens	•				
Clerodendrum		fresh leaves	trituration	oral	F16
splendens					
Clerodendrum		fresh leaves	trituration	oral	F17
splendens					
Clerodendrum		fresh leaves	trituration	oral	F27
splendens					
Coffea canephora	Annona, Persea,	fresh leaves	decoction	oral	F30
cojjeu cunepnoru	Capsicum, Elaeis	ii coii ica ves	accoction	orur	130
Coffea canephora	associated with <i>Carica</i> 's	fresh leaves	decoction	oral	F22
	leaves	110311 10aves	decoction	orui	1 22
Coffea canephora	associated with <i>Carica</i> 's	fresh leaves	decoction	oral	F22
-Cojjea canephora	roots	110311 leaves	accocnon	orai	1.22
Coffea canephora	Associated with <i>Persea</i>	fresh leaves	decoction	Vaporation bath	F20
	Carica, Musa paradisiaca,	fresh leaves	decoction	Vaporation bath	F20 F27
Coffea canephora	Citrus limon	iresn leaves	decoction	vaporation bath	F27
Coffea canephora	Chromolaena, Psidium	fresh leaves	decoction	Vaporation bath	F3
	Chromotaena, 1 statum			-	
Coffea canephora		fresh leaves	decoction	oral	F15, F29
Cymbopogon citratus	associated with Carica	fresh leaves	decoction	Vaporation bath	F16
Cymbopogon citratus	Zingiber, Alstonia	roots	decoction	oral	F16
Dacryodes edulis	associated with Lippia	stem bark	decoction	oral	F18
Dichrocephala	Ageratum, Musa	whole plant	decoction	Bath	F2
integrifolia	paradisiaca, Chenopodium				
Dichrocephala	associated with Ageratum	fresh leaves	decoction	oral	F18
integrifolia			_		
Dichrocephala	associated with Acmela	fresh leaves	pound	Scarification	F16
integrifolia					
Dichrocephala		fresh leaves	decoction	nasal	F26
integrifolia					
Dichrocephala		fresh leaves	pound	Application on	F16
integrifolia				stomach	
Dichrocephala		fresh leaves	pound	nasal	F25
integrifolia					
Dichrocephala		fresh leaves	pound	Scarification	F3
integrifolia					
Dichrocephala		fresh leaves	trituration	nasal	F18
integrifolia					
Dichrocephala		fresh leaves	warm on	nasal	F3, F8,
integrifolia			fire-friction-		F10
			squeeze		
Dichrocephala		roots	pound	Scarification	F3
integrifolia					
Elaeis guineensis	associated with Ageratum	seeds	oil	rub on child	F24
Elaeis guineensis	associated with Coffea	sap	palm wine	oral	F30
Elaeis guineensis	associated with	fruits	oil	Massage	F6
	Tetrapleura				
Enantia chlorantha	Associated with Alstonia	stem bark	decoction	oral	F29
Enantia chlorantha	associated with	stem bark	decoction	oral	F3
	Schumanniophyton	our	2223011		
	Schumannophyton				

Enantia chlorantha	Citrus limon	stem bark	decoction	oral	M2
Enantia chlorantha	Schumanniophyton, Picralima, Bidens	stem bark	decoction	oral	F27
Enantia chlorantha		stem bark	decoction	oral	F1, F2, F4, F7, F8, F9, F10, F14, F16, F18, F25, F28, M1, M4, M5
Enantia chlorantha		stem bark	maceration	oral	F10, F16, F18
Eucalyptus camaldulensis	associated with <i>Carica</i> 's fresh leaves	fresh leaves	decoction	oral	F22
Eucalyptus camaldulensis	associated with <i>Carica</i> 's roots	fresh leaves	decoction	oral	F22
Ipomoea involucrata	associated with Lippia	fresh leaves	decoction	Vaporation bath	F18
Ipomoea involucrata	associated with Spathodea	fresh leaves	warm on fire-friction- squeeze	nasal	F3
Ipomoea involucrata	associated with Spathodea	fresh leaves	warm on fire-friction- squeeze	Oral instillation	F3
Khaya ivorensis		stem bark	decoction	oral	F1, M2
Lippia sp	Citrus limon, Ipomoea, Ocimum, Vitex, Carica, Dacryodes	fresh leaves	decoction	Vaporation bath	F18
Lippia sp		fresh leaves	decoction	oral	F15
Mangifera indica	Associated with Persea	fresh leaves	decoction	Vaporation bath	F20
Manihot esculenta		Tuber	dry-squeeze	Scarification	M6
Morinda lucida	Spathodea	fresh leaves	warm on fire-friction- squeez	nasal	F16
Morinda lucida	Vernonia	fresh leaves	trituration	oral	M3
Morinda lucida		fresh leaves	ash	nasal	F23
Morinda lucida		fresh leaves	warm on fire-friction- squeeze	nostril	F14
Morinda lucida		stem bark	decoction	oral	F14
Musa paradisiaca	associated with Carica	fresh leaves	decoction	Vaporation bath	F16
Musa paradisiaca	associated with Coffea	fresh leaves	decoction	Vaporation bath	F27
Musa paradisiaca	associated with Dichrocephala	dead leaves	decoction	Bath	F2
Musa sapientum	associated with Chromolaena	dead leaves	decoction	Vaporation bath	F5
Musa sapientum	associated with Coffea	dead leaves	decoction	Vaporation bath	F23
Ocimum gratissimum	associated with Lippia	fresh leaves	decoction	Vaporation bath	F18
Ocimum gratissimum		fresh leaves	warm on fire-friction- squeeze	oral	F13
Persea americana	associated with Coffea	fresh leaves	decoction	oral	F30
Persea americana	Mangifera, Coffea, Citrus reticula, carica	fresh leaves	decoction	Vaporation bath	F20
Picralima nitida	associated with Enantia	stem bark	decoction	oral	F27
Picralima nitida		stem bark	decoction	oral	F4

Psidium guajava	associated with <i>Carica</i> 's roots	fresh leaves	decoction	oral	F22
Psidium guajava	associated with <i>Carica</i> 's leaves	fresh leaves	decoction	oral	F22
Psidium guajava	associated with Coffea	fresh leaves	decoction	Vaporation bath	F3
Pteridium aquilinum	Sarcophrynium schweinfurthianum	fresh leaves	decoction	Vaporation bath	F24
Rauvolfia vomitoria	associated with Alchornea	fresh leaves	decoction	oral	F7
Rauvolfia vomitoria		fresh leaves	decoction	Massage	F16, F27
Rauvolfia vomitoria		fresh leaves	decoction	oral	F15
Rauvolfia vomitoria		fresh leaves	warm on fire-friction- squeeze	Massage	F18
Rauvolfia vomitoria		fresh leaves	warm on fire-friction- squeeze	press on painful side	F25
Rauvolfia vomitoria		roots	decoction	oral	F3
Rauvolfia vomitoria		roots	pound	nasal	F18
Rauvolfia vomitoria		seeds		oral	F26
Rauvolfia vomitoria		stem bark	decoction	oral	F7, F18, F19, F25
Sarcophrynium schweinfurthianum	Associated with Pteridium	fresh leaves	decoction	Vaporation bath	F24
Schumanniophyton magnificum	associated with Enantia	stem bark	decoction	oral	F27
Schumanniophyton magnificum	Enantia	stem bark	decoction	oral	F3
Schumanniophyton magnificum	Solanum aethiopium	fresh leaves	pound	Scarification	F27
Schumanniophyton magnificum		stem bark	decoction	oral	F3, F4, F6, F9, F16, M6
Solanum aethiopium	associated with Schumanniophyton	fresh leaves	pound	Scarification	F27
Spathodea campanulata	Associated with Morinda	fresh leaves	warm on fire-friction- squeeze	oral	F16
Spathodea campanulata	Bridelia scleroneura, Tabernaemontana, Capsicum	stem bark	decoction	auricular	F8
Spathodea campanulata	Bridelia scleroneura, Tabernaemontana, Capsicum	stem bark	decoction	nasal	F8
Spathodea campanulata	Ipomoea involucrata, Capsicum frutescens	fresh leaves	warm on fire-friction- squeeze	nasal	F3
Spathodea campanulata	Ipomoea involucrata, Capsicum frutescens	fresh leaves	warm on fire-friction- squeeze	Oral instillation	F3
Spathodea campanulata		fresh leaves	warm on fire-friction- squeeze	nasal	F27
Acmella caulirhiza	Dichrocephala	fresh leaves	pound	Scarification	F16
Tabernaemontana crassa	associated with Spathodea	stem bark	decoction	auricular	F8
Tabernaemontana crassa	associated with Spathodea	stem bark	decoction	nasal	F8

Tabernaemontana crassa		fresh leaves	warm on fire-friction- squeeze	press on painful side	F21
Tabernaemontana crassa		stem bark	decoction	oral	F13, F21
Tetrapleura tetraptera	Elaeis guineensis	stem bark	rapure	Massage	F6
Cofea robusta	Theobroma	fresh leaves	decoction	oral	F28
Theobroma cacao	associated with Coffea	fresh leaves	decoction	oral	F28
Thitonia diversifolia	associated with Chromolaena	fresh leaves	decoction	Vaporation bath	F5
Vernonia amygdalina	Alstonia	fresh leaves	decoction	oral	F20
Vernonia amygdalina	Clerodendrum, Capsicum frutescens	fresh leaves	trituration	rectal	F16
Vernonia amygdalina		fresh leaves	trituration	oral	F15
Vernonia amygdalina		fresh leaves	trituration	oral	F26
Vernonia amygdalina		roots	pound	nasal	F16, F27
Vitex doniana Sweet	associated with Lippia	fresh leaves	decoction	Vaporation bath	F18
Voacanga africana	associated with Albizia	fresh leaves	pound	Application on stomach	M6
Voacanga africana	associated with Carica	fresh leaves	decoction	Vaporation bath	F16
Voacanga africana		fresh leaves	decoction	oral	F15, F28
Voacanga africana		roots	decoction	nasal	F6
Voacanga africana		roots	decoction	oral	F15
Voacanga africana		roots	maceration	nasal	F6
Voacanga africana		seeds		oral	F28
Zingiber officinalis	associated with Cymbopogon	roots	decoction	oral	F16

Characterization of recipes

Recipes are characterized by the plant part, the pharmaceutical form, the mode of administration, and the degree of association of plant species involved.

A total of nine plant parts were cited by Andom people for treating malaria, including: dead leaves, fresh leaves, roots, sap, seeds, stem barks, tubers, and fruits. Figure 1 illustrates the result. Fresh leaves (49% of citations) and stem barks (33%) are in this order the plant parts that are largely cited. Dead or dried leaves represent only 1.4% of citations. Sometimes, people of Andom village use the whole plant (1.4%).

A total of eleven different mode of preparation of plants (or pharmaceutical forms)

were cited (figure 2): ash, decoction, dry-squeeze, grind, infusion, maceration, oil, pounding, rapure, trituration, warm on fire-friction-squeeze, and wine. Decoction (68% of citations) is the most important mode of preparation of anti-malarial plants.

The relative importance of the modes of administration of recipes used as anti-malarial by Andom people is illustrated in figure 3. A total of 14 modes of administration are shown including: application on stomach, auricular, bath, friction, massage, nasal instillation, application on nostril, oral, pressing on painful side, rectal, rubbing on body, scarification, and vapour bath. Oral voice is largely cited (56%), followed by vapour bath (15%) and nasal instillation (11%). About 51.6% of the citations are made of combination of two, three, four, five, six, or seventh plant species.

Figure 1: Relative importance of plant parts cited for treating malaria in Andom village

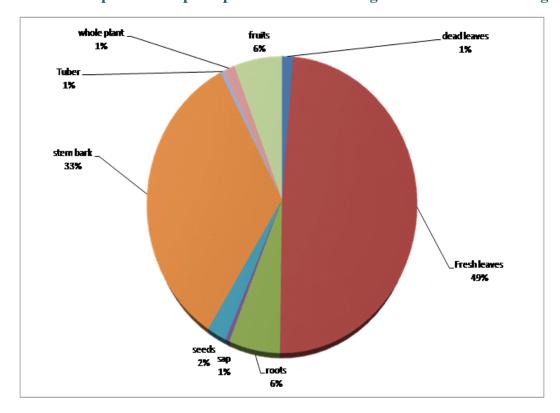
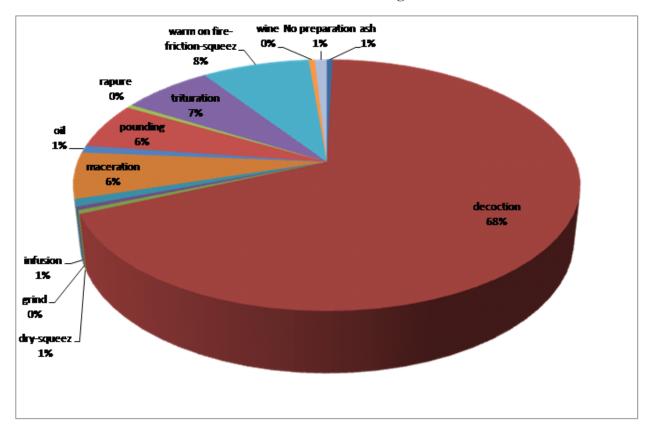



Figure 2: Relative importance of the modes of preparation of recipes in the treatment of malaria in Andom village.

Application on stomach

1%

Scarification

1%

Wassage

2%

rub on body

rectal

3%

press on

painful side

1%

Oral

instillation

1%

Oral

instillation

1%

Figure 3: Relative importance of modes of administration of recipes in the treatment of malaria in Andom village.

DISCUSSIONCharacteristics of recipes

Recipes gathered in Andom village on antimalarial plants were compared to those obtained in the Dja Biosphere Reserve in the East Cameroon (Betti, 2001; 2003) and in the Ipassa-Makokou biosphere Reserve in Gabon (Betti et al., 2013), using almost the same method While leaves appear to be the most important plant parts used in Andom village and Ipassa-Makokou Biosphere Reserve (more than 50%), people living inside and in the periphery of the Dia Biosphere Reserve use mainly stem barks (60%) for treating malaria. Leaves arrive in the third position with only of citations. Andom people have preferences in the use of freshly collected leaves (49%) than dried or dead leaves (1%). Studies had shown that there were quantitative and qualitative differences in the essential oil components of fresh and dry plant materials. Dry plant material might not be as potent as freshly collected materials (Idowu et al., 2010). As observed in the Dia and Ipassa-Makokou Biosphere Reserves, decoction is the main mode of preparation of recipes in Andom village. While people living in Andom village and the Dja Biosphere Reserve use mainly oral voices, those living in the Ipassa-Makokou Biosphere Reserve in Gabon, prefer vaporation baths as the way of administration of recipes in the treatment of malaria. About half of the recipes indicated for treating malaria by people living in Andom are made of combination of many plant species. In the Ipassa-Makokou Biosphere Reserve, 73% of recipes were made of combination of many plant species. According to Rasoanaivo *et al.* (2011), there is evidence that crude plant extracts often have greater anti-plasmodial activity than isolated constituents at an equivalent dose.

Use of medicinal plants out of Andom village

Citations of plants used in Andom village were compared to those mentioned in African countries. Table 4 presents each plant species cited in Andom, the countries where the same plants are indicated with the references in brackets. A total of 29 plants (57%) used by people living in Andom village as anti-malarial are also known in other region of Cameroon and other African countries for the same usage. The most cited plant species are: Alstonia boonei (8 countries), Rauvolfia vomitoria (7), Carica papaya (6), Cymbopogon citratus (5), Morinda lucida (5), and Mangifera indica (5), Enantia chlorantha (4), Picralima nitida (4).

Table 4: Use of anti-malarial plants out of the Andom village

Sources

1 : Adjanohoun *et al.* (1996) ; 2 : Bitsindou (1996) ; 3 : Diafouka (1997) ; 4 : Iwu *et al.* (1992) ; 5 : Magilu *et al.* (1996) ; Ngalamulume *et al.* (1995) ; 7 : Richel (1995) ; 8 : Cousteix (1961) ; 9 : Dijk (1999) ; 10 : Betti (2001) ; 11 : Iwu (1994) ; 12 : Betti (2003), 13 : Tchouamo and Njoukam (2000) ; 14 : Betti and Van Essche (2001); 15: Satoing *et al.* (2011); 16 : Betti (2002) ; 17: Idowu *et al.* (2010); 18: Betti *et al.* (2013) .

Plant species	Countries (reference)
Acmella caulirhiza	Cam (9, 10)
Ageratum conizoides	Gab (18)
Alstonia boonei	Cam (1, 8, 9, 10,12,14, 16); Cng (3); Ga (18); Geq (2); Nig (7, 17),
	Sén (7); DRC (5); Tog (7)
Annona muricata	Gab (18)
Bidens pilosa	Cam (1, 10, 12); DRC (2)
Capsicum frutescens	Cam (10, 12, 14, 15); DRC (2), Cng (3), Gab (18)
Carica papaya	Cam (1, 10, 12, 13, 14, 15); Cng (2, 3); Nig (7, 17), Gha (15), Tog
	(7); Gab (18)
Citrus limon	Cam (9, 10, 12, 14, 15); DRC (2, 5), Gab (18)
Chromolaena odorata	Gab (18)
Clerodendrum splendens	Geq (2); Cng (2); Gab (2, 18)
Cymbopogon citratus	Cam (1, 2, 9, 10, 12, 14, 15); Cng (2, 3); DRC (2); Ni (17); Gab (18)
Dacryodes edulis	Gab (18)
Elaeis guineensis	Cam (10, 12, 14); DRC (2); Gab (18)
Enantia chlorantha	Cam (8, 9, 10, 12, 14, 16); Geq (2); Cng (3); Gab (18)
Ipomoea involucrata	Gab (18)
Mangifera indica	Cam (10, 12, 14, 15); Gab (2, 18); DRC (2); Cg (3), Ni (17)
Manihot esculenta	Gab (18)
Morinda lucida	Cam (9, 10, 12, 14, 16); Cng (2); DRC (5); Nig (7, 11, 17), Tog (7)
Musa paradisiaca	Gab (18)
Ocimum gratissimum	Cam (10, 12, 14); Cng (3); Ni (17)
Persea americana	Gab (18)
Picralima nitida	Cam (1, 9, 10, 12, 14, 16); DRC (5), Nig (4, 11), Gab (18)
Psidium guajava	Cam (15), Ni (17), Gab (18)
Rauvolfia vomitoria	Cam (1, 9, 10, 12, 14); Gab, RCA (2); DRC (2, 5, 6); Nig (7, 17);
	Tog (7); Bén (7)
Schumanniophyton	Cam (10, 12, 14)
magnificum	
Spathodea campanulata	Cam (1, 9, 10, 12, 14); Cng (2)
Tabernae montana crassa	Cam (9)
Tetrapleura tetraptera	Com (10, 12, 14)
	Cam (10, 12, 14)

Countries: Ben.: Benin; Cam: Cameroon; Cng: Congo Brazzaville; Gha: Ghana; Geq: Equatorial Guinea; Nig: Nigeria; Sen: Senegal; Gab: Gabon; RCA: Central African Republic; DRC: Democratic Republic of Congo; Tog: Togo.

Eight out of the twenty nine plant species (27.6%) also known for their anti-malarial usage out of Andom village are well recognized for their real activity against malaria including: Alstonia boonei, Carica papaya, Citrus limon, Cymbopogon citratus, Enantia chlorantha, Morinda lucida, Picralima nitida, and Vernonia amygdalina.

Alstonia boonei, Carica papaya, Citrus Cymbopogon citratus, Enantia chlorantha, Picralima nitida and Vernonia amygdalina have been reported to be active against Plasmodium spp (Betti, 2001; 2003; Betti et al., 2013). Clinical investigation of Carica papaya, Cymbopogon citratus, Ocimum gratissimum, and Vernonia amygdalina, used as traditional medicines in Kinshasa, the Democratic Republic of Congo, to treat malaria significant removal patients showed parasites in the blood, as well as elimination of clinical detection of disease (Taba et al., 2012). The anti-malarial activity of Morinda lucida established (Rubiaceae) has been Plasmodium berghei (Makinde and Obih, 1985; Obih et al., 1985), P. voelii nigeriensis (Agomo et al., 1992) and P. falciparum (Gbeassor et al., 1988; Koumaglo et al., 1992; Sittie et al., 1999; Tona et al., 1999). A prophylactic activity has also been established by Makinde and Salako (1991). According to Koumaglo et al. (1992), this activity is due to the presence of three compounds (anthraquinones) including digitolutein. rubiadin-1-methyl ether damnacanthal isolated from the stem and root barks. Tona et al. (1999) having put in evidence Morinda's activity on leaves which

do not contain the above compounds, concluded that the leaves' activity may come from other type of compounds. The age of development of the plant part does not have any effect on the activity of *Morinda* (Tona *et al.* 1999). Iwu (1994) revealed that the antimalarial activity of *M. lucida* is largely exploited in primary health centers in Nigeria. However studies have reported the toxicity of that plant species (Idowu *et al.*, 2010).

CONCLUSION

The fact that some plant species cited by Andom people be recognized for their activity against *Plasmodium*, is a credibility index which can be attributed to the pharmacopoeia of those people. This also illustrates the efficiency of the method used to identify medicinal plants of the Andom village. The glaring development challenge at the background of what precedes is the pressing need to implement strategies and programmes to identify active chemical substances of other plant species of this list, which have not yet been investigated for their chemical and antimalarial activities.

ACKNOWLEDGEMENTS

We thank all the villagers who collaborated with us in this study.

This paper has been produced with the financial assistance of the Cameroon Government and the Japanese Cooperation (JICA) under the FOSAS Forest-Savanna Sustainability Project, Cameroon".

REFERENCES

Adjanohoun E, Aboubakar N, Dramane K, Ebot ME, Ekpere JA, Enow-Orock EG, Focho D, Gbilé ZO, Kamanyi A, Kamsu Kom J, Keita A, Mbenkum T, Mbi CN, Mbiele AL, Mbome IL, Mubiru NK, Nancy WL, Nkongmeneck B, Satabié B, Sofowora A, Tamze V, Wirmum, CK (1996). Contribution to Ethnobotanical and Floristic Studies in Cameroon. CSTR/OUA.

Agomo PU, Idigo JC, Afolabi BM (1992). Antimalarial medicinal plants and their impact on cell populations in various organs of mice. *African journal of medicine and medical sciences*. 21 (2):39–46.

- Balick MJ (1985). Useful plants of Amazonia: a resource of global importance In G.T. Prance & T.E. Lovejoy, (eds). Key environments: Amazonia. Oxford, Pergamon Press.
- Balick MJ (1990). Ethnobotany and the identification of therapeutic agents from the rainforest. In. Chadwick DJ & Marsh J, (eds). Bioactive compounds from plants (Ciba Foundation Symposium No. 154). Wiley, Chichester: 22–32.
- Balick MJ (1994). Ethnobotany, drug development and biodiversity conservation exploring the linkages. In. Chadwick DJ & Marsh J, (eds). Ethnobotany and the Search for New Drugs (Ciba Foundation Symposium No. 185). Wiley, Chichester: 4–18.
- Betti JL (2001). Usages traditionnels et vulnérabilité des plantes médicinales dans la réserve de biosphère du Dja, Cameroun. Thèse de Doctorat, Université Libre de Bruxelles.
- Betti JL (2002). Medicinal plants sold in Yaoundé markets, Cameroon. *African Study Monographs*. 23 (2): 47–64.
- Betti JL (2003). Plantes utilisées pour soigner le paludisme dans la Réserve du Dja, Cameroun. Revue de Médecines et Pharmacopées Africaines. 17: 121–130.
- Betti JL, Van Essche K (2001). Enquêtes sur la pharmacopée populaire et spécialisée dans la réserve de faune du Dja (Cameroun): premiers résultats sur les plantes utilisées pour taiter la fièvre ou le paludisme en pharmacopée populaire. Etnofarmacologia. 1: 46–62.

- Betti JL, Midoko Iponda D.Yongo OG, Obiang Mbomio D, Mikolo Yobo C, Ngoye A, Issembe Y (2013). Ethnobotanical study of medicinal plants of the Ipassa-Makokou Biosphere Reserve, Gabon: plants used for treating malaria. *Journal of medicinal plants research*. 7: 2300–2318.
- Bitsindou M (1996). Enquêtes sur la phytothérapie traditionnelle à Kindamba et Odzala. Thèse de Doctorat Université Libre de Bruxelles.
- Cotton (1996) Ethnobotany. Principles and applications. Ed. Wiley, 424p
- Cousteix P-J (1961). L'art et la pharmacopée des guérisseurs Ewondo (Région de Yaoundé). Recherches et études camerounaises, Yaoundé, IRCAM, 1961: 86 p.
- Diafouka A (1997). Analyse des usages des plantes médicinales dans quatre régions du Congo Brazzaville. Thèse de Doctorat Université Libre de Bruxelles.
- Dijk J F W (1999). Non-timber forest products in the Bipindi-Akom II region, Cameroon. A socio-economic and ecological assessment. The Tropenbos-Cameroon programme.
- Gbeassor M, Kossou Y, De Souza C, Amegbo K, Denke A (1988). Action de quelques plantes médicinales sur la croissance du Plasmodium falciparum in vitro. Bulletin de Médecine Traditionnelle et Pharmacopées. 4 (2): 139–146.
- Idowu O A, Soniran O T, Ajana O, Aworinde D O (2010). Ethnobotanical survey of antimalarial plants used in Ogun State, Southwest Nigeria. *African Journal of Pharmacy and Pharmacology*. 4 (2): 055–060.

- Iwu M M (1994). African medicinal plant in the search for new drugs based on ethnobotanical leads. In. Chadwick DJ & Marsh J (eds) Ethnobotany and the Search for New Drugs (Ciba Foundation Symposium No. 185). Wiley, Chichester: pp. 116–129.
- Iwu M M, Klayman D L (1992). Evaluation of the in vitro antimalarial activity of Picralima extracts. *Journal of Ethnopharmacology*, 36 (2): 133–135.
- Iwu M M, Jackson JE, Tally JD, Klayman DL (1992). Evaluation of plant extracts for antileishmanial activity using a mechanism-based radiorespirometric microtechnique (RAM): Planta Medica 58 (1992): 436–441.
- King SR, Tempesta MS (1994). From shaman to human clinical trials: the role of industry conservation in ethnobotany, and community reciprocity. In Chadwick DJ & Marsh J (eds) Ethnobotany and the Search for New Drugs (Ciba Foundation Symposium No. 185). Wiley, Chichester: 197-206.
- Koumaglo K, Gbeassor M, Nikabu O, de Souza C, Werner W (1992). Effects of three compounds extracted from Morinda lucida on Plasmodium falciparum. *Planta Medica* 58 (6): 533–534.
- Magilu M, Mbuyi M, Ndjélé MB (1996).

 Plantes médicinales utilisées par les pygmées (Mbute) pour combattre le paludisme dans la zone de Mambasa, Ituri, Zaïre. In L.J.G. van der Maesen, X.M. van der Burgt & J.M. van Medenbach de Rooy (eds.) Kluwer Academic publishers. The Netherlands. *The biodiversity of African Plants*, 741–746.

- Makinde JM, Obih PO (1985). Screening of Morinda lucida leaf extract for antimalarial action on Plasmodium berghei berghei in mice. *African journal of medicine and medical sciences*, 14 (12): 59–63.
- Makinde JM. Salako LA (1991). The antimalarial activity of some Nigerian plants on Plasmodium medicinal berghei berghei. Quatrième symposium inter-africain OUA/CSTR sur pharmacopée traditionnelle et les plantes médicinales africaines: rapport et recommandations. Abuja Nigeria 18-22 juillet 1988: 424-425.
- Ngalamulume Tschimuene J, Paulus SJ, Kabeya M, Nlandus L., Kizika K (1995) Plantes médicinales à usage domestique cultivées dans deux quartiers de Kinshasa. Bull. Méd. Trad. Pharm., 9, (2): 9–14.
- Obih PO, Makinde M, Laoye OY (1985). Investigation of various extracts of Morinda lucida for antimalarial action on Plasmodium berghei berghei in mice. *African journal of medicine and medical sciences*. 14 (12): 45–49.
- Oketch-Rabah HA, Mwangi JW (1998). La médecine traditionnelle et les plantes médicinales ont-elles une place dans la lutte antipaludique? 3ème Conférence panafricaine sur le paludisme. Naïrobi/Kénya, 22-24 juin 1998. http://www.chez.com/malaria/09fran 15.htm.
- Richel T (1995). Les plantes médicinales d'Afrique occidentale. Essai de synthèse sur base de la banque de données pharmel. Thèse Doctorat Université Libre de Bruxelles.

- Rasoanaivo1 P, Wright CW, Willcox ML, Gilbert B (2011). Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria Journal 2011, 10 (Suppl 1). http://www.malariajournal.com/content/10/S1/S4.
- Saotoing P, VroumsiaToua, Tchobsala, Tchuenguem Fohouo F-N, Njan Nloga A-M, Messi J (2011). Medicinal plants used in traditional treatment of malaria in Cameroon. *International Journal of the Physical Sciences*, 3 (3): 104–117.
- Sittie AA, Lemmich E, Olsen CE., Hviid L, Kharazmi A, Nkrumah FK, Christensen SB (1999) Structure activity studies: in vitro antileishmanial and antimalarial activities of anthraquinones from Morinda lucida. Planta Med., 65(3): 259–261.

- Taba KM, Paulius J, Kayembe JS (2012).

 Malaria: Novel plant remedies show great promises in treating the deadly disease. *Global J Res. Med. Plants & Indigen. Med.*, Volume 1 (3): 62–68.
- Tchouamo IR, Njoukam R (2000) Etude de quelques ligneux utilises en médecine traditionnelle par les Bamileke des Hauts-Plateaux de l'Ouest du Cameroun. *Ethnopharmacologia*. 26: 14–22.
- Tona L, Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, De Bruyne T., Pieters L, Totté J, Vlietinck A.J. (1999). Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa, *Congo. Journal of Ethnopharmacology* 68: 193–203.
- World Malaria Organization Report 2008, Geneva, World Health Organization, 2008

Source of Support: Government of Cameroon and the Japanese Cooperation (JICA) under the FOSAS Forest-Savanna Sustainability Project, Cameroon Conflict of Interest: None Declared